
This document summarises some practices pioneered as part of the Shrimping project in
Morecambe. To find out more, visit http://shrimping.it or Twitter @ShrimpingIt

Shrimping It : Programming Introduction
To help users in their first encounter with programming, a form of interactive shell programming
[ref] is employed, which avoids the need for understanding monolithic code blocks all at once.

To illustrate this, we can look at the classic ‘Blink sketch’, sample code which is distributed as
a simple introductory example for new Arduino users [ref]. It causes the green LED attached to
Arduino’s pin 13 to toggle between HIGH (light on) and LOW (light off) once a second.

To a computer scientist, this code provides an incredibly simple example, and makes perfect
sense. By convention, any steps defined in a function called setup()are executed only once,
whilst the steps in a function called loop()are repeated over and over again.

The single step in setup()configures pin 13 to be an output. The four steps in loop() turn on
the LED, wait for a second, turn it off, wait for a second and then repeat in sequence forever.

However, to a novice, a very large number of concepts must be simultaneously understood in
order to relate the code to the behaviour in anything more than a superficial way. Although you
can read this code somewhat intuitively, to write code for themselves, experimenters need to
have total command of every programming detail they use.

http://shrimping.it
http://shrimping.it
http://shrimping.it
http://shrimping.it
http://shrimping.it

Even the first word void, and the question ‘why is it there’ can open up a large and complex
topic about function definitions, return values and pointers. A shortlist of concepts which are
forced upon the reader from just this code listing is roughly as follows; data types, the void
keyword, functional programming with side-effects, function definitions, C statement syntax,
code blocks, sequenced arguments.

Perhaps worse, the only way that a novice programmer can verify their comprehension of any
of these aspects is to upload a complete code listing to a #Shrimp, which encapsulates all of the
concepts simultaneously, and see if it does what they expect. Frequently this means they are
limited to copying whole programs written by others, and learning by modifying small parts. This
makes it extremely difficult to create bespoke behaviour for their own project designs, as noone
else may have shared code for a sufficiently similar behaviour.

Our teaching approach for novice programmers is very different, and is based on the use
of a python library and firmware (pyfirmata and StandardFirmata [ref]) which allows the
microcontroller to be remote-controlled from a laptop, one step at a time.

Participants are told we have put software on the #Shrimp which allows us to remote control it.
We demonstrate this by issuing single, self-contained commands from the laptop in the python
language, using an interactive interpreter known as the python shell [ref].

In this way we interactively introduce and demonstrate the use of individual concepts, in more
or less this sequence, values, types, expressions, names, variables, steps, names, variables,
functions and loops. After encountering each statement in turn and in isolation, participants are
able to confirm their understanding by typing individual steps and observing immediate effects.
An example session is illustrated by screenshots and descriptions below.

Of course, it is hard to recreate the interactive presentation here using only screenshots. The
reader should note that each line typed is individually explained during the class and when
executed they often have immediate and visible consequences.

Each line preceded by >>> is a single command, sometimes followed by responses from the
computer (lines without the >>>).

The sequence is demonstrated at the front of the class using a digital projector, with participants
using their own computer, terminal and #Shrimp to demonstrate each of the principles, and
experiment with their own variations on the commands we provide.

Here we introduce values, expressions
and types.

Initially the computer just parrots the
text and number values ‘Shrimp’ and
1 provided, showing that it recognises
them. Then we introduce expressions by
showing it can do arithmetic with number
values.

We show how one or more values can
be stored with a human readable name
for our convenience. We demonstrate
retrieving a named value.

The Arduino IDE tells us our #Shrimp
is connected with the name ‘/dev/
ttyUSB0’.

In the first line, we load the Arduino
remote control functionality from
pyfirmata. Connecting with
Arduino(‘/dev/ttyUSB0’)we then
store the connection for later use with the
name shrimp.

We get hold of digital pin 13 storing it
with the name led. We light the LED on
pin 13 with led.write(HIGH), whilst
led.write(LOW)extinguishes it.

We load in some time functionality and
demonstrate the sleep()command
which causes the computer to wait for
the specified time in seconds before
the cursor reappears. This effect is self-
evident during a presentation.

Here a more complex structure is
introduced - a function definition -
combining the principles already proven
by participants themselves.

Finally a while loop is introduced,
triggering identical behaviour to the
earlier Blink sketch.

However, unlike the Blink sketch, every
constituent part of the program has
been introduced and demonstrated
invididually.

As participants ask questions it’s often
possible to run individual lines of code
which correspond to their questions,
giving them immediate and concrete
answers.

With a final flourish we reveal that all of the individual lines of code we have interactively typed
and observed can be put into a file so they can be executed in sequence with a single click - a
program, which creates a behaviour that we want.

The listing, blink.py looks as follows.

from pyfirmata import Arduino
from time import sleep

shrimp=Arduino(‘/dev/ttyUSB0’)
led=shrimp.digital[13]

def flash():
 led.write(1)
 sleep(1)
 led.write(0)
 sleep(1)

while True:
 flash()

We can run this stored program by typing
python blink.py

This is our final step before introducing participants to the full Arduino IDE and the example
Blink sketch. Blink.ino is introduced as a way of expressing the same behaviour as Blink.py,
but using the language C and the Arduino IDE to put code onto the microcontroller directly.
This sequence also allows us to discuss the advantages of having the #Shrimp able to run the
behaviour on it’s own, without a laptop attached, and the fact that it is a self-contained computer
in its own right. We see this as a radically inverted model of disclosure from the standard model
adopted as part of Arduino learning.

