
Cockle Badge Tutorial

A possibly newer copy of this document is available at http://shrimping.it/project/badge/tutorial.pdf

Equipment Provided

In your packs you should have…

A USB A-to-MicroB 2 Amp (high-current) cable (@ShrimpingIt-orange)
A NodeMCU v2 (Cockle)
A WS2811 RGB LED display
A 3-way jumper cable with 2.54mm pitch female sockets
A 3xAAA switched battery pack with 2.54mm pitch female sockets
A transparent Lanyard-style badge-holder
A Lanyard cord (@ShrimpingIt-orange)

Preparing your Equipment

If you are in an official @ShrimpingIt workshop, pre-configured laptops will be provided and you can skip to
the next step. To use your own machine, scroll down to Appendix A: Configuring your laptop, then come
back here when you are finished.

If you have a Cockle provided by @ShrimpingIt, then Micropython should already be installed and you can
skip to the next step. If not, then visit Appendix B: Configuring your Cockle, then come back here when you
are finished.

Connecting to the Cockle

You will need…

The Orange USB cable
The NodeMCU v2 (Cockle)

Step 1: Plug in the Cockle

The cockle’s USB Micro-B socket can be fragile. Be careful when plugging and unplugging the
cable. If the cable doesn’t slide in easily, try turning the plug upside down
@ShrimpingIt official USB cables can handle 2Amps. Cheaper cables often cannot power up

http://shrimping.it/project/badge/tutorial.pdf

the Cockle or the lights.

Step 2: Launch a ‘Console’

On @ShrimpingIt linux laptops (with Kupfer launcher) press CTRL+SPACE together, type
terminal and press Return

On Mac OS press the Apple+Space keys together, type terminal and press Return

On Windows, go to Start and Run, type cmd.exe and press Return

Step 3: Connect over UART to the Cockle

On @ShrimpingIt linux laptops, type screen /dev/ttyUSB0 115200

Mac OS users can launch screen as well, except your UART will be called something like
/dev/tty.SLAB_USBtoUART

On Windows, install Putty as a terminal emulator instead of Gnu Screen

If the Cockle has connected successfully, you should see three chevrons like this…

>>>

…and you can continue to the next step Issuing Commands

Troubleshooting

If the console has gone blank, but the chevrons don’t appear try the following until they do
try pressing Return in case the chevrons were already sent before we connected, and
they should be sent again
try pressing the CTRL+C keys together in case a command was already running, and they
should then appear to await a new command
visit Appendix B: Configuring your Cockle, to install Micropython and repeat

Issuing commands

After connecting, we should be in what is known as a REPL - a Read, Eval, Print Loop.

This means that the Cockle is…

READING the commands we send
EVALUATING the commands (running them, often generating a result)
PRINTING the result (showing the result on screen)
LOOPING back (returning to the READING step - over and over again)

Let’s try it out to learn some fundamental programming concepts.

Core Programming Concepts

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Values
Type 4+4 and press Return . What happens? That was an arithmetic expression,
which results in a number.
Type 4*4 with an asterisk instead and press Return . (hint x is treated as a
letter in a computer language).
Enter 'Hello' + 'World'

Names
Enter square = 4*4

Enter square (we just assigned a value to a name, so we can refer to it later)
Enter capital = 'Paris'

Enter capital

Steps
Enter raw_input('What is the capital of Colombia? ')

Enter capital = raw_input('What is the capital of Colombia? ')

Groups of Values: Lists, Dictionaries
Enter sequence = [3,4,5,6,7,8]

Enter sequence

Enter sequence[0]

Enter sequence[1:4]

Enter [num*num for num in sequence]

Groups of Steps: Blocks and Functions
Enter range(2,6)

Enter def square(x):

Press Tab, then Enter return x*x

Delete all spaces/tabs then press Return

Enter square(4)

Libraries

Libraries contain reference implementations of functions for example sqrt(4*4) in the python
math library calculates square roots.

Type the following two lines

from math import sqrt

sqrt(4*4)

Connecting the LED Display

You will need…
The 8-LED Display (this is long and thin)
The Jumper wires

Look on the back of your LED display. It should have three pins going into it, and three pins going out. Find
the end of the board with the following three connections.

Data In - labelled DIN
Power - labelled 4-7VDC
Ground - labelled GND

Use the jumper wires to attach to the Cockle as follows

DIN —>D2
4-7VDC —> Vin
GND —> GND

Now connect to your Cockle and run the following lines to set up the display and send a color…

from neopixel import NeoPixel

from machine import Pin

count = 8

output = Pin(4)

display = NeoPixel(output, count)

red = (255,0,0)

display[0] = red

display.write()

black = (0,0,0)

display[0] = black

display.write()

display[0]=(255,0,0)

display[1]=(0,255,0)

display[2]=(0,0,255)

display.write()

Introducing For

To set all the pixels, we can use a for loop block. A for loop in python runs a set of commands once for
every item in a list. We can create a list of the different pixel positions between 0 and count using
range(count) .

Note the first line finishes with a colon, and the commands to be repeated in the loop are indented (only
display[pos] = red is repeated in the loop below).

for pos in range(count):

 display[pos] = red

display.write()

for pos in range(count):

 display[pos] = (0, 0, pos//count*255)

display.write()

for pos in range(count):

 display[pos] = (0, 0, (count pos)//count*255)

display.write()

Introducing While

A while loop block repeats commands while an expression remains true. This is often used with

greenVals = [pos*255//count for pos in range(count)]

redVals = [(count pos)*255//count for pos in range(count)]

blueVals = [0 for pos in range(count)]

while True:

 for pos in range(count):

 display[pos] = (greenVals[pos], redVals[pos], blueVals[pos])

 display.write()

from time import sleep

greenVals = [pos*255//count for pos in range(count)]

redVals = [(count pos)*255//count for pos in range(count)]

blueVals = [0 for pos in range(count)]

offset = 0

while True:

 for pos in range(count):

 display[(pos + offset) % count] = (greenVals[pos], redVals[pos], bl

ueVals[pos])

 display.write()

 sleep(0.05)

 offset = offset + 1

Intro to Voltage Divider

USB is stepped from e.g. 5V down to 3.3V through a Low Dropout (LDO) regulator

Powering from batteries

Wire through badge to 3.3V
4x AAA battery pack

very cheap batteries - more life from Duracells
Alternative Mobile Phone charger attached to Micro-USB

potentially last for days

Finishing your Light-Up-Lanyard

The badges you’ve been provided with can be used to carry your Cockle, Battery pack and LED display.

Appendix A: Configuring your Own Laptop

If you are using a home machine, you will need to

Ensure the CP2102 USB to UART drivers are installed
a restart of your machine is typically needed after this step

Ensure Python3 is installed
Python version 3 is preferred, the same version as your badges will run, but Python 2 will do

After completing these steps you should be able to plug in your NodeMCU, (see under Powering Up),
then run a terminal or cmd.exe and enter the following…

python c "import serial.tools.list_ports;print serial.tools.list_ports.com

ports()"

If you have successfully completed configuring your laptop, the at least one serial port should be listed. If
it reports [] (an empty list between square brackets), then the device or drivers have a problem.

on Linux it may report ['ttyUSB0'] or on Mac OS it may report ['tty.SLAB_USBtoUART'] . On
both Linux and Mac OS the full port name should be prefixed by /dev/ making it /dev/ttyUSB0 .

On Windows it may report ['COM4'] , meaning the Port Name is COM4

If more than one port appears in the list, unplug and replug your NodeMCU, and identify which port appears

http://shrimping.it/drivers/cp2012
https://www.python.org/downloads/

and disappears from the list.

Appendix B: Configuring your own NodeMCU

See https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html or http://bit.ly/2f0JdZL
for short

Appendix C: Programming over Wifi

See https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/repl.html or http://bit.ly/2eELBby
for short.

https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html
http://bit.ly/2f0JdZL
https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/repl.html
http://bit.ly/2eELBby

