
Overview
Today you’ll have an encounter with Maker culture, and be given a bunch of tools to
experiment with physical computing. Where you take it from here, is up to you!

There will be presentations of the creative and often crazy interactive objects which
people are building using microcontrollers. You’ll find out how to recreate others’
projects, and personalise the construction or the behaviour according to your own tastes
and ideas.

You’ll learn programming basics, and how code helps people to understand the
behaviour of computers. In particular you’ll learn about values, types, lists, steps, and
names. You’ll encounter named values, known as variables, and named steps, known
as functions

You’ll experiment with the tools and skills for prototyping electronics by creating your
own minimal #Shrimp Arduino-compatible computer to take home, and creating a neat
visual illusion as an example of what it can do.

Planned Activities
First of all, we will build a minimal #Shrimp project board. To prove that the circuit is correct,
we’ll add an LED and connect it through a resistor to Ground to create a Blink circuit. Then we
can upload the Blink program to the microcontroller, which will tell it to flash the LED. We’ll use
this program as an example to learn programming.

Next, we’ll create a Persistence of Vision circuit, by removing the resistor and LED and adding
8 LEDs in a row, connected back to ground with a wire. After uploading the ShrimPOV sketch
we should be able to see letters painted in the air.

If we have time, we’ll design our own pixelated bitmap images, on graph paper, calculate
the binary numbers which can be used to represent them, then edit the ShrimPOV font in the
program code, replacing some characters we don’t need with our own images. When this
modified code is uploaded, we should see our own images appearing.

Getting started
First of all, check the components in your bag, you should have at least the following...

1x Paper overlay
1x ATMEGA328 Microcontroller
1x CP2102 USB to UART converter
1x Rainbow jumper cable
1x Solderless breadboard
1x 3AAA battery pack with switch
3x AAA 1.5Volt Alkaline Battery
1x 100 nanoFarad capacitor (marked 104)
1x 10 KiloOhm resistor (with Brown, Black and Orange stripes)
1x 100 Ohm resistor (with Brown, Black and Brown stripes)
1x 16MHz crystal
3x Green wire
2x Red wire
1x 9-pin header strip
4x 2-pin header strip

To construct your #Shrimp, just follow the detailed steps in the interactive workshop.

For some workshops with limited time, some of the initial stages will have already been
completed for you to save time, such as attaching the overlay, or inserting the ATMEGA chip.

Attach overlay (2-pin headers)
First, we attach a paper overlay to the 400 tie-point
solderless breadboard. We will use this as a guide to
put the components in the right places by poking them
through the indicated holes.

To follow along with the presentation material, the
overlay should be positioned with the ATMEGA pin
number 1 at the top left corner (e.g. the chip showing a
half-moon shape at the top). As a double check of the
overlay position, the 9 pin header with colored wires
should be at the top left of the circuit.

The paper overlay shows four pairs of “header strip”
pins in the corners. These have no effect on the wiring
of the circuit (they don’t connect anywhere), but they will
hold the overlay in place.

Carefully align a 2-pin header strip with
each corner of the diagram. Push them
through the paper into the two “power
rails” which run down the sides of the
breadboard. They will hold the paper
overlay in place.

Insert the ATMEGA chip
Now is the time to add the ATMEGA microcontroller if
it’s not already in the breadboard. This is a black oblong
with numbers printed on it, and 28 silver legs, looking
a bit like an insect. It is the computer at the heart of a
#Shrimp, with the ability to control inputs and outputs -
sensing or triggering things out there in the world.

Check that there are holes in the paper overlay
corresponding with the little silver legs, 14 holes on
each side of the chip for a total of 28 holes. Punch new
holes with a pin if they are not yet there.

Check that the microcontroller’s legs don’t splay out
too much as this will make it hard to insert, or could
possibly break the legs if you force them. If the legs are
not at right angles to the chip, ease them into position
by gently pressing one side of the chip against the
table top (14 pins at a time). Measure their position by
balancing the chip on the paper overlay, where the legs
should line up with the picture.

Carefully align the chip, checking the
half-moon shape is at the top, with two
empty breadboard rows above the chip.
Check the legs pass cleanly through
where they are drawn on the paper, into
the breadboard below. Once the legs are
all aligned. press down until the chip
slides fully into the board (about 3mm
movement).

Add the 9-pin power and
programming header
A series of copper pins will be used to program and
provide power to the #Shrimp. Find the line of 9 pins in
black plastic, shown on the paper overlay with colored
wires going to them. Not all of the 9 pins be used in this
circuit, but putting all 9 in the right place will help you
position everything else.

Push the 9-pin header strip into the top
left corner of the board, leaving just one
empty row at the top of the board

Attaching the Rainbow jumper
cable
Your CP2102 module should have been provided with a
5-pin rainbow-colored cable, with Red, Orange, Yellow,
Green and Brown wires.

Leaving the wires attached to each other
in a strip, push the ends of the jumper
cable onto the 9-pin header according to
the colors in the diagram.

Add the 100
nanoFarad ‘decoupling’
capacitor
Look for the 100 nanoFarad capacitor, which is a small
disc with two thin wires coming out of it. Our ‘104’
capacitors are ceramic capacitors so it doesn’t matter
which way round they are inserted, each leg is the
same as the other.

As a ‘decoupling’ capacitor, it will smooth out any
random electrical spikes which appear on Pin 1, and
ensures that signals sent to it are stable and reliably
detected. Pin 1 accepts a ‘reboot’ signal for your
computer. This smoothing component helps guarantee
the chip will reboot only when you request it (e.g. when
you’re reprogramming the microcontroller) and not at
other random times.

The digits 104 indicate its capacitance using scientific
notation. It means the number of picoFarads would
start ‘10’ and then continue with a further 4 zeroes,
so it would be written as 100,000 picoFarads. Since 1
nanoFarad is 1000 picoFarads, there’s 100 nanoFarads
in a capacitor marked ‘104’.

Insert the capacitor marked ‘104’ between

● the header pin with the Brown wire
attached

● the top left leg of the chip
(pin 1, immediately anticlockwise

from the half-moon shape)

Add the 10 kiloOhm ‘pull-up’
resistor
Look for a brown or blue cylinder with a wire at each
end, showing colored stripes starting Brown, Black,
Orange. Resistors have no orientation, and can be
attached either way round.

This component is used as a pull-up resistor and is
attached to the positive wire of the power supply,
approximately 5 Volts. It therefore ‘pulls up’ the reboot
pin (Pin 1) to have a positive voltage, unless the reboot
pin is connected to Ground, approximately zero Volts.
When reprogramming the microcontroller, the brown
wire is connected to ground, and causes the chip to
reboot. Before it starts running again, the new program
is sent over the orange wire.

The first three colored stripes on a resistor represent
the resistance of the component in just the same
way as the capacitor we described above. The only
difference is that colors are used instead of digits.
Decoding the colors Brown=1, Black=0, Orange=3 gives
us the number 103. That means the resistance in Ohms
starts ‘10’ and continues with a further 3 zeroes, making
it 10,000 Ohms. Since one kiloOhm is 1000 Ohms,
there’s 10 kiloOhms in a resistor marked Brown, Black,
Orange.

Attach the resistor with Brown, Black and
Orange stripes between

● the header pin with the Red wire
attached (positive power line,
approx. 5 Volts)

● the top left leg of the chip
(pin 1, immediately anticlockwise

from the half-moon shape)

Add the 16 MHz Crystal
Look for a silver box with rounded ends, and
two wires, marked 16.000.

You can think of a computer as something
a bit like clockwork. In fact the first digital
computer in the world was built using
clock-making techniques, and had cogs
representing numbers.

The 16.000 mark indicates the number
of back-and-forth movements this crystal
generates per second, in megaHertz. One
Hertz means once per second, and one
MegaHertz means one million times per
second.

Insert the crystal with one leg in the row
immediately below the Green wire, and the
other leg in the row below that

Add Power and Ground wires
crossing the chip
Look for one Red and one Green wire, stripped to show
silver at each end.

The ATMEGA chip is broken up internally into separate
parts, each of which expects to be provided with a
stable power supply. A power and ground connection
will be provided to the left half of the chip by the red
and green wires attached to the 9-pin header. Two
additional wires are needed to connect the power
supply to the correct legs on the right-hand half of the
microcontroller.

Connect a Red wire from the existing Red
wire, across the chip and down two rows.
Connect a Green wire from the existing
Green wire, across the chip and up one
row.

Attach the CP2102 USB to UART
module
Look for a green or blue-coloured circuit
board with a USB connector at one end and 6
pins at the other end.

This device enables your desktop or laptop
machine to communicate with the #Shrimp,
for example to send new programs to it with
the free Arduino IDE, or to exchange other
information with a program when it’s running
on the #Shrimp.

Attach the other end of the rainbow wires
to the labelled pins on the CP2102 as
follows...

● Red -> 5V
● Orange -> TXD
● Yellow -> RXD
● Green -> GND
● Brown -> DTR (labelled on the

back)

You’ve made your own Computer!

You’ve now finished making a Minimal #Shrimp circuit, which can act as the digital controller for
many experimental projects.

A more complete Protected #Shrimp circuit is described at http://shrimping.it. It has additional
protective components, handy if you plan to use all the features of the ATMEGA microcontroller,
or if you need to use it in an electrically noisy environment. A Protected #Shrimp can substitute
for an Arduino Uno hobby board in almost any project.

You should be supplied with the additional components to turn a Minimal #Shrimp into a
Protected #Shrimp in a separate bag at your workshop, for later experimentation.

Create the ‘Blink’ Circuit
Now we will construct a test circuit by adding an LED and a resistor, and uploading a test
program onto the #Shrimp which causes the LED to flash.

Add a Light Emitting Diode
Look for a red or clear dome with two wire legs coming
out the bottom.

A diode is a component which only allows electrical
current to flow in one direction. One leg is longer than
the other leg to indicate which way round the diode
needs to be wired. Electricity should flow into the long
leg and out of the short leg. Round LEDs also have one
slightly flatter side, which corresponds with the short,
negative leg of the LED.

Insert an LED, inserting the long leg to the
row below the Red line on the right hand
side of the chip (power, or 5Volts) and the
short leg in the first empty row below the
microcontroller.

http://shrimping.it
http://shrimping.it
http://shrimping.it
http://shrimping.it
http://shrimping.it

Add a ‘current-limiting’ resistor

Look for a brown or blue cylinder with a wire
at each end, showing coloured stripes starting
Brown, Black, Brown. Resistors have no
orientation, and can be attached either way
round.

The amount of electricity flowing through an
LED needs to be controlled to prevent it from
overheating and destroying itself. Our circuit
is running at approximately 5 Volts, and
LEDs are typically rated for just over 2 Volts.
After a short while, applying 5 Volts would
cause our LED to fail. We therefore need to
add a resistor in series to prevent all 5 Volts
from being applied to the LED. Some of the
voltage will be used up by the resistor, and
only a share of the Voltage is applied across
the LED.

For an explanation of the coloured stripes,
see the earlier section describing the pull-up
resistor.

Insert the resistor between the short leg of
the LED, and the row containing the Green
wire on the right hand side of the chip
(ground or 0Volts)

Upload the ‘Blink’ program
To upload a new program, you need to have the
CP2102 drivers installed in your machine. You can
download installers for Windows and Mac at http://
shrimping.it/drivers/ Modern Linux machines should
automatically connect to the CP2102 device as the
drivers are built-in to the operating system.

Load ‘Blink’ which is in the menu under File ->
Examples -> Basics -> Blink
Check there is a tick next to the correct entry in
Tools->Serial Ports
Check that there is a dot next to Arduino Uno in
Tools->Board
Click on the Horizontal Arrow in the toolbar to
upload the program.

Change the ‘Blink’ code
You can change bits of your code to prove
that your machine is able to send new
behaviours to your microcontroller.

Why not change the number of milliseconds
in the delay request so that the light blinks
much more quickly, much more slowly
spends longer on for a long blink, or spends
longer off for a short blink.

http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/
http://shrimping.it/drivers/

